Review on Chemical-Biological Applications of Thiazole Derivatives

Authors

  • Nagham Mahmood Aljamali Author
  • Manar Ghyath Abd‑Almutalib Almosawy Author
  • Ahmed Adnan Abdul Hussein Author
  • Nour Alhuda Abdul Abbas Bahar Author
  • Rajaa Abdul Ameer Ghafil Author

DOI:

https://doi.org/10.5281/zenodo.10450076

Keywords:

thiazole, bicycles, biological activity, preparation, reactions

Abstract

This review showed many chemical methods for preparation ,reactions, applications, uses of thiazole derivatives in many fields like in: coordination chemistry, analytical reagents, biological field like in antibacterial  agents ,antifungal agents, in a medicinal chemistry or in pharmaceutical  chemistry like as a drugs. The review covers possible chemical and medical applications of thiazoles derivatives.

References

Afaq, J. K., Ahmed, A. A. H., Nagham, M. A., Ahmed, A. A. H. and Afaq, J. K. (2020). Invention of Imidazole & Thiazole-Sulfazane Ligands (Synthesis, Spectral Investigation, Microbial Behavior) for The First Time. Int. J. Pharm. Res., 12.

Ala, J., Jalal, H. M. and NaghamMahmoodAljamali. (2020). Thiazole Amide Derivatives (Synthesis, Spectral Investigation, Chemical Properties, Antifungal Assay). NeuroQuantology 18, 16–25.

Aldrich, C., Bertozzi, C., Georg, G., Kiessling, L., Lindsley, C., Liotta, D., Merz, K. and A., J. S. (2017). Wang S. The ecstasy and agony of assay interference compounds. ACS Cent. Sci 3, 143–147.

Aljamali., N. M. and Intisar, O. A. (2015). "Synthesis of Sulfur Heterocyclic Compounds and Study of Expected Biological Activity". Research J. Pharm. and Tech 8, 1225–1242.

Aseel, M. J., Nagham.Mahmood.Aljamali. and Aseel, M. J. (2020). Innovation, Preparation of Cephalexin Drug Derivatives and Studying of (Toxicity and Resistance of Infection). International Journal of Psychosocial Rehabilitation 24, 3754–3767.

Atamanyuk, D., Zimenkovsky, B., Atamanyuk, V. and Lesyk, R. (2014). 5-Ethoxymethylidene-4-thioxo-2-thiazolidinone as Versatile Building Block for Novel Biorelevant Small Molecules with Thiopyrano[2,3-d][1,3]thiazole Core. Synth.Commun 44, 237–244.

Atamanyuk, D., Zimenkovsky, B., Atamanyuk, V., Nektegayev, I. and Lesyk, R. (2013). Synthesis and biological activity of new thiopyrano[2,3-d]thiazoles containing a naphthoquinone moiety. Sci. Pharm. 81, 423–436.

Baell, J. (2016). Feeling nature’s PAINS: Natural products, natural product drugs, and pan assay interference compounds (PAINS). J. Nat. Prod 79, 616–628.

Biswas, S., Jennens, L. and Field, H. (2007). The helicase primase inhibitor, BAY 57-1293 shows potent therapeutic antiviral activity superior to famciclovir in BALB/c mice infected with herpes simplex virus type. 1. Antivir. Res 75, 30–35.

Bryhas, A., Horak, Y., Ostapiuk, Y., Obushak, M. and Matiychuk, V. (2011). A new three-step domino Knoevenagel–hetero-Diels–Alder oxidation reaction. Tetrahedron Lett 52, 2324–2326.

Charlier, C. and Mishaux, C. (2003). Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. Eur. J. Med. Chem 38, 645–659.

Chavan, A. and Pai, N. R. (2007). “Synthesis and biological activity of N-substituted-3-chloro-2-azetidinones,”. Molecules 12, 2467–2477.

Ead, H., Abdallah, S., Kassab, N., Metwalli, N. and Saleh, Y. (1987). 5-(Ethoxymethylene)thiazolidine-2,4-dione derivatives:Reactions and biological activities. Arch. Pharm 320, 1227–1232.

El-Subbagh, H. I., Abadi, A. H. and Lehmann, J. (1999). “Synthesis and Antitumor Activity of Ethyl 2-Substituted-aminothiazole-4- carboxylate Analogs,”. Archiv der Pharmazie 332, 137–142.

Ghaemmaghami, S., May, B. C. H., Renslo, A. R. and Prusiner, S. B. (2010). “Discovery of 2-aminothiazoles as potent antiprion compounds,”. Journal of Virology 84, 3408–3412.

Gorczynski, M. J., Leal, R. M., Mooberry, S. L., Bushweller, J. H. and Brown, M. L. (2004). “Synthesis and evaluation of substituted 4- aryloxy- and 4-arylsulfanyl- phenyl-2-aminothiazoles as inhibitors of human breast cancer cell proliferation,”. Bioorganic and Medicinal Chemistry 12, 1029–1036.

Grishchuk, A., Komaritsa, I. and Baranov, S. (1966). 4- Thionazolidones, derivatives and analogs. Chem. Heterocycl. Comp 2, 541–543.

Heidrchfft., NoorhanAliHamza., NourAlhudaAbdulAbbasBahar. and NaghamMahmoodAljamali. (2019). Nitrophenyl Hydrazine Derivatives (Formation, Characterization, Physical and Polarized Optical Behavior). Jour of Adv Research in Dynamical and Control Systems 11, 206–213.

Kaminskyy, D. and Kryshchyshyn, A. (2017). Lesyk R.Recent developments with rhodanine as a scaffold for drug discovery. Expert Opin.Drug Discov 12, 1233–1252.

Kaminskyy, D., Kryshchyshyn, A. and Lesyk, R. (2017). 5-Ene-4- thiazolidinones—An efficient tool in medicinal chemistry. Eur. J. Med.Chem 140, 542–594.

Kaminskyy, D., Vasylenko, O., Atamanyuk, D., Gzella, A. and Lesyk, R. (2011). Isorhodanine and thiorhodanine motifs in the synthesis off used thiopyrano[2,3-d][1,3]thiazoles. Synlett 10, 1385–1388.

Kaur, H., Kumar, S., Singh, I., Saxena, K. K. and Kumar, A. (2010). “Synthesis, characterization and biological activity of various substituted benzothiazole derivatives,”. Digest Journal of Nanomaterials and Biostructures 5, 67–76.

Kayagil and Demirayak, S. (2009). “Synthesis and anticancer activities of some thiazole derivatives,”. Phosphorus, Sulfur and Silicon and the Related Elements, 184, 2197–2207.

Kesicki, E. A., Bailey, M. A., Y., O. and et al. (2016). “Synthesis and evaluation of the 2-aminothiazoles as anti-tubercular agents,”. PLOS ONE 11.

Komarista, I. (1989). Synthesis, Transformations and Biological Activity of Some Azolidones and Their Condensed Derivatives. Sechenov First State Medical Institute ,Moscow, Russia.

Kowiel, M., Zelisko, N., Atamanyuk, D., Lesyk, R. and Gzella, A. (2012). 2-[7-(3,5-Dibromo-2-hydroxyphenyl)-6-ethoxycarbonyl-2- oxo5H 2,3,6,7-tetrahydrothiopyrano[2,3-d][1,3]thiazol-6-yl]acetic acid ethanol monosolvate. ActaCrystalogr.E 68, o2721–o2722.

Kryshchyshyn, A., Atamanyuk, D., Kaminskyy, D., Grellier, P. and Lesyk, R. (2017). Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety. Biopolym.Cell 33, 183–205.

Kryshchyshyn, A., Atamanyuk, D. and Lesyk, R. (2012). Fused thiopyrano[2,3-d]thiazole derivatives as potential anticancer agents. Sci.Pharm 80, 509–529.

Kryshchyshyn, A., Kaminskyy, D., Grellier, P. and Lesyk, R. (2014). Trends in research of antitrypanosomal agents among synthetic heterocycles. Eur. J. Med. Chem 85, 51–64.

Kryshchyshyn, A., Zimenkovsky, B. and Lesyk, R. (2008). Synthesis and anticancer activity of isothiochromeno[3,4-d]thiazole derivatives. Ann. Univ. Mariae Curie Sklodowska DDD Pharm 21, 247–251.

Lesyk, R. and Zimenkovsky, B. (2004). 4-Thiazolidones: Centenarian history, current status and perspectives formodern organic and medicinal chemistry. Curr. Org. Chem 8, 1547–1577.

Lesyk, R., Zimenkovsky, B., Atamanyuk, D., Jensen, F., Kiec- Kononowicz, K. and Gzella, A. (2006). Anticancer thiopyrano[2,3- d [1,3]thiazol2-ones with norbornane moiety. Synthesis, cytotoxicity, physico-chemical properties, and computational studies. Bioorg. Med.Chem 14, 5230–5240.

Lesyk, R., Zimenkovsky, B., Kaminskyy, D., Kryshchyshyn, A., Havrylyuk, D., Atamanyuk, D., Subtelna, I. and Khylyuk, D. (2011). Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group. Biopolym.Cell 27, 107–117.

Lin, P., Hou, R., Wang, H., Kang, I. and Chen.L. (2009). “Efficient Synthesis of 2-Aminothiazoles and Fanetizole in Liquid PEG-400 at Ambient Conditions,”. Journal of the Chinese Chemical Society 56, 455–458.

Lozynskyi, A., Matiychuk, V., Karpenko, O., Gzella, A. and Lesyk, R. (2017a). Tandem hetero-Diels–Alder-hemiacetal reaction in the synthesis of new chromeno[4,3 :4,5]thiopyrano[2,3-d]thiazoles. Heterocycl.Commun 23, 1-5.

Lozynskyi, A., Zasidko, V., Atamanyuk, D., Kaminskyy, D., Derkach, H., Karpenko, O., Ogurtsov, V., Kutsyk, R. and Lesyk, R. (2017b). Synthesis,antioxidant and antimicrobial activities of novel thiopyrano[2,3-d]thiazoles based on aroylacrylic acids. Mol.Divers 21, 427–436.

Lozynskyi, A., Zimenkovsky, B., Gzella, A. and Lesyk, R. (2015). Arylidene pyruvic acids motif in the synthesis of new 2H,5Hchromeno[4,3:4,5]thiopyrano[2,3-d]thiazoles via tandem hetero-Diels-Alder-hemiacetal reaction. Synth.Commun 45, 2266–2270.

Lozynskyi, A., Zimenkovsky, B. and Lesyk, R. (2014). Synthesis and Anticancer Activity of New Thiopyrano[2,3-d]thiazoles Based on Cinnamic Acid Amides. Sci. Pharm 82, 723–733.

Lozynskyi, A., Zimenkovsky, B., Nektegayev, I. and Lesyk, R. (2015). Arylidene pyruvic acids motif in the synthesis of new thiopyrano[2,3-d]thiazoles as potential biologically active compounds. Heterocycl.Commun 21, 55–59.

Löscher, W., von, H. A., Nolting, B., Fassbender, C.-P. and Taylor, C. (1991). Ralitoline: A reevaluation of anticonvulsant profile and determination of “active” plasma concentrations in comparison with prototype antiepileptic drugs in mice. Epilepsia 32, 560–568.

Masoudi, N. A.and Pfleiderer, W. and Pannecouque, C. (2014). “Nitroimidazoles part 7. synthesis and anti-HIV activity of new 4- nitroimidazole derivatives,”. ZeitschriftfürNaturforschung B 67, 835–842.

Matiychuk, V., Lesyk, R., Obushak, M., Gzella, A., Atamanyuk, D., Ostapiuk, Y. and Kryshchyshyn, A. (2008). A new domino- Knoevenagelhetero-Diels-Alder reaction. Tetrahedron Lett 49, 4648–4651.

Metwally, N. (2007). Synthesis of some new fused thiopyrano[2,3-d]thiazoles and their derivatives. J. Sulfur Chem 28, 275–284.

Metwally, N. (2008). A convenient synthesis of some new 5-substituted-4-thioxo-thiazolidines and fused thiopyrano[2,3- d]thiazole derivatives. Phosphorus Sulfur Silicon Relat. Elem 183, 2073–2085.

Downloads

Published

2020-03-14

How to Cite

Review on Chemical-Biological Applications of Thiazole Derivatives. (2020). Forefront in Engineering & Technology, 2(3), 5-10. https://doi.org/10.5281/zenodo.10450076